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F2 and BC1 populations derived from a cross between two 
inbred lines “Muromskij” (early flowering) and “9930” 
(late flowering) suggested quantitative nature of flowering 
time in cucumber. Genome-wide comparison of SnP pro-
files between the early and late-flowering bulks constructed 
from F2 plants identified a major QTl, designated Ef1.1 on 
cucumber chromosome 1 for early flowering in Muromskij, 
which was confirmed by microsatellite marker-based clas-
sical QTl mapping in the F2 population. Joint QTl-seq 
and traditional QTl analysis delimited Ef1.1 to an 890 kb 
genomic region. A cucumber gene, Csa1G651710, was 
identified in this region, which is a homolog of the FLOW-
ERING LOCUS T (FT), the main flowering switch gene in 
Arabidopsis. Quantitative rT-PCr study of the expression 
level of Csa1G651710 revealed significantly higher expres-
sion in early flowering genotypes. Data presented here 
provide support for Csa1G651710 as a possible candidate 
gene for early flowering in the cucumber line Muromskij.

Introduction

Proper timing of flowering has an important adaptive value 
for flowering plants. The transition from the vegetative 
phase to the reproductive phase is tightly controlled by mul-
tiple physiological signals and genetic pathways (Koornneef 
et al. 1998). In Arabidopsis, this transition is mainly under 
the control of FLOWERING LOCUS T (FT) which has been 
shown to encode a mobile floral signaling molecule (Kar-
dailsky et al. 1999; Corbesier et al. 2007). FT homologs that 
play pivotal roles in floral induction have been identified in 
many crop plants such as tomato, Solanum lycopersicum l. 
(lifschitz et al. 2006), rice, Oryza sativa l. (Tamaki et al. 
2007), soybean, Glycine max (Kong et al. 2010), and onion, 
Allium cepa l. (lee et al. 2013). In cucumber (Cucumis 
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sativus l.), one FT homolog is identified based on the 
sequence similarity with FT (Sato et al. 2009), but its rela-
tionship with flowering time in cucumber is not clear.

Flowering time is also an important trait and the target 
of selection in plant breeding. Genetic control of flowering 
time is in general quantitative in nature. Many studies have 
detected quantitative trait loci (QTl) related to flowering 
time or earliness in various crops. For example, in rice, 
15 QTls were associated with days to flowering in rice 
(Maheswaran et al. 2000). In tomato, three QTls, fast flow-
ering (Ff), Ff-1 and Ff-2, were detected for earliness (lind-
hout et al. 1994). Cucumber is the fourth most important 
vegetable worldwide (Tatlioglu 1993). Commercial cucum-
bers are in general photoperiod neutral. early flowering is 
an important trait in cucumber that contributes to earliness 
and economic yield (robbins and Staub 2009). Several 
studies identified QTls for flowering time in cucumber. For 
example using an F2:3 mapping population derived from a 
cross between cultivated and wild cucumber, Dijkhuizen 
and Staub (2002) detected two QTls for days to anthesis 
with unknown chromosomal locations (one was presum-
ably in chromosome 6 due to its linkage with the female-
ness locus F). Using a rIl mapping population, Fazio 
et al. (2003) detected four QTls controlling days to anthe-
sis with low lOD support which were located in linkage 
groups 1,2,5, and 6, which seem to corresponded to chro-
mosomes 6, 2, unknown, and 5, respectively (Weng et al. 
2010). More recently, with a rIl population derived from 
two cultivated cucumber inbred lines 9930 and 9110Gt, 
Miao et al. (2012) identified a major effect QTl for days 
to anthesis for the first female flower, which was located in 
cucumber chromosome 1 flanked with microsatellite mark-
ers SSr22826 and SSr22638. However, the exact loca-
tion of the QTl is not clear, not to mention the underlying 
genes and the precise genomic positions of these flowering 
time QTls in cucumber are unknown.

Many agronomic traits in crop species such as flowering 
time, yield, and stress tolerance show a continuous pheno-
typic variation (Paterson et al. 1988). QTl mapping is the 
main approach for genetic dissection of quantitative traits, 
which provides the start point for map-based cloning of 
related genes and marker-assisted selection (MAS) in plant 
breeding. QTl mapping is usually conducted by genotyp-
ing a large number of individuals in segregating populations 
derived from bi-parental crosses, which is labor-intensive, 
time-consuming and sometimes costly (Salvi and Tuber-
osa 2005). The bulked-segregant analysis (BSA) (Michel-
more et al. 1991) provides a simple and effective alterna-
tive to identify molecular markers linked to target genes 
or QTls affecting a trait of interest by genotyping only a 
pair of bulked DnA samples from two sets of individu-
als with distinct or opposite extreme phenotypes. With the 
rapid development of next-generation sequencing (nGS) 

technologies, new strategies were proposed to take advan-
tages of the power of BSA and nGS-aided high-throughput 
genotyping, which have been demonstrated in identifying 
major QTls in yeast (Saccharomyces cerevisiae) (ehren-
reich et al. 2010; Swinnen et al. 2012), Arabidopsis thali-
ana (Schneeberger et al. 2009), rice (Oryza sativa. l) (Abe 
et al. 2012; Yang et al. 2013), and sunflower (Helianthus 
annuus l.) (livaja et al. 2013). More recently, Takagi et al. 
(2013) described the QTl-seq approach for rapid map-
ping of quantitative trait loci in rice by whole genome re-
sequencing of DnA bulks of phenotypic extremities. The 
objective of the present study was to identify major QTl 
for early flowering in cucumber using QTl-seq. We con-
ducted whole genome re-sequencing of two DnA bulks, an 
early and a later flowering pool developed from plants in an 
F2 population. Genome-wide SnP analysis allowed detec-
tion of a genomic region harboring the major early flower-
ing QTl, which was confirmed with classical QTl analy-
sis. results from the study provided preliminary evidence 
that the cucumber FT gene is a possible candidate for this 
early flowering major QTl in cucumber.

Materials and methods

Plant materials and phenotyping for flowering time

Two cucumber inbred lines, “Muromskij” (CGn23617) and 
“9930” were used as parental lines to develop segregating 
populations for flowering time. Muromskij, from russia, 
is one of the 115 core lines whose genome has been rese-
quenced (Qi et al. 2013), and 9930 is a north China fresh 
market type cucumber (Chinese long) whose draft genome 
assembly is available (Huang et al. 2009). Both lines are 
monoecious in sex expression, but Muromskij usually flow-
ers 7–10 days earlier than 9930 after transplanting. Among 
115 lines in the cucumber core collection we created before 
(lv et al. 2012), Muromskij had the earliest flowering time. 
A cross was made between 9930 (female parent, P1) and 
Muromskij (pollen donor, P2) to create F1, which was self-
pollinated to generate the F2 population, and backcrossed 
with 9930 to generate for BC1P1 or with Muromskij for 
BC1P2.

Flowering time of F2 plants was recorded in three exper-
iments conducted in 2012 spring, 2012 autumn and 2013 
spring with 159, 232 and 258 F2 individuals, respectively. 
Flowering time of the BC1P1 (190 plants) populations was 
investigated only in spring of 2013. P1, P2 and F1 plants 
(3–24 individuals) were included in all experiments. 
For each plant, the date of the first flower (either male or 
female) was recorded, and the days to anthesis after trans-
planting (DTA) was calculated as the flowering time of the 
plant. All the materials referred above were grown in the 
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greenhouses in Beijing, China and were under long day-
light exposure during flowering period. The day and night 
average temperature of the greenhouse was controlled at 28 
and 15 °C, respectively.

Generation and analysis of nGS data

Genome DnAs was isolated using the CATB method (Mur-
ray and Thompson 1980) from fresh leaves of the P1, P2, 
F1 and F2 plants from the 2012 autumn experiment which 
were used for both QTl-seq and SSr marker analysis.

For QTl-seq, two DnA pools, early pool (e-pool) and 
late pool (l-pool) were constructed, respectively, by mix-
ing an equal amount of DnAs from 10 early flowering 

(DTA = 14–15) and 10 late flowering (DTA = 21–23) 
F2 plants from the 2012 autumn experiment. Pair-end 
sequencing libraries (read length 100 bp) with insert sizes 
of around 500 bp were prepared for sequencing with an 
Illumina Genome Analyzer IIx machine.

The short reads from e-pool and l-pool were aligned 
to the 9930 reference genome (Huang et al. 2009) with 
the BWA software (li and Durbin 2009). SnP-calling was 
performed by SAM tools software (li and Durbin 2009). 
low-quality SnPs with base quality value <20 and read 
depth <4× or those with >32× coverage from the e-pool 
sequences were excluded because these SnPs maybe false 
positives due to genomic repeat sequence, sequencing or 
alignment errors.

Fig. 1  Flowering time perfor-
mance of two parents and their 
F1, and frequency distribution of 
days to anthesis after transplant-
ing among different populations 
in spring 2012, autumn 2012 
and spring 2013 greenhouse 
experiments. a 9930 (P1, left), 
Muromskij (P2, middle) and 
their F1 (right). Muromskij 
and F1 had early flowering 
than 9930. Photos were taken 
16 days after transplanting 
(Spring 2013). b The frequency 
of flowering time of P1, P2, 
F1 and F2 population in spring 
2012. c The frequency of flow-
ering time of P1, P2, F1 and F2 
population in autumn 2012. d–e 
The frequency of flowering time 
of P1, P2, F1, F2 and BC1P1 
population in spring 2013
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Two parameters, SnP-index and Δ (SnP-index) (Abe 
et al. 2012; Takagi et al. 2013) were calculated to identify 
candidate regions for early flowering QTl. An SnP-index 
is the proportion of reads harboring the SnP that are dif-
ferent from the reference sequence. Δ (SnP-index) was 
obtained by subtraction of SnP-index of e-pool from that 
of l-pool. Thus, SnP-index = 0 if the entire short reads 
contain genomic fragments from 9930; SnP-index = 1 if 
all the short reads were from Muromskij. An average of 
SnP-index of SnPs located in a given genomic interval 
was calculated using a sliding window analysis with 1 Mb 
window size and 10 kb increment. The SnP-index graphs 
for e-pool and l-pools, as well as corresponding Δ (SnP-
index) graph were plotted.

The Δ (SnP-index) value should not be significantly 
different from 0 in a genomic region no major QTl of 
the target gene (Takagi et al. 2013). We calculated sta-
tistical confidence intervals of Δ (SnP-index) for all 
the SnP positions with given read depths under the null 
hypothesis of no QTls, and plotted them along with Δ 
(SnP-index). For each read depth, 95 % confidence inter-
vals of Δ (SnP-index) were obtained following Takagi 
et al. (2013).

QTl analyses with SSr and Indel markers

The major QTl for early flowering identified from QTl-seq 
was verified with SSr marker-based traditional QTl analysis. 
SSr markers in the predicted region of cucumber chromo-
some 1 (ren et al. 2009) were employed for polymorphism 

screening between the two parental lines, and between the 
e-pool and l-pool. Additional Indel (insertion or deletion) 
markers were identified by aligning e-pool Illumina reads to 
the 9930 reference genome with BWA/SAMtools software 
(li and Durbin 2009). Primers for the Indel markers were 
designed with Primer 5 (http://www.PromerBiosoft.com). 
Polymorphic markers were applied to the F2 population 
plants. linkage analysis was performed with JoinMap 
4.0 (Van Ooijen 2011). QTl analysis was conducted with 
MapQTl4.0 using the multiple QTl model (MQM mapping) 
procedure (Van Ooijen et al. 2002).

expression analysis of flowering time candidate gene 
by real-time PCr

We investigated the expression pattern of Csa1G651710, 
which is a homolog of the Arabidopsis FLOWERING 
LOCUS T (FT) gene in cucumber using quantitative rT-
PCr (qPCr). In the spring 2013 experiment, leaf samples at 
15th node were collected from five P1, P2 and F1 individu-
als 30 days after transplanting, respectively. At the same day, 
we selected the five early flowering individuals from BC1P1 
(B-e), five late-flowering individuals from BC1P1 (B-l), five 
early flowering individuals from F2 (F-e) and five late-flow-
ering individuals form F2 (F-l). leaf samples were also col-
lected at 15th node, respectively. each sample collected was 
one repeat. So there were five biological repeats for P1, P2, 
F1, B-l, B-e, F-e and F-l. Total rnAs for all the samples 
were extracted with easyPure Plant rnA Kit (TranGen Bio-
tech, Beijing, China). reverse transcription was conducted 
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http://www.PromerBiosoft.com
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by Transcript one-step gDnA removal and cDnA synthe-
sis Supermix (TranGen Biotech). The qPCr primer pair 
sequences for Csa1G651710 were 5′-TCGTGACCCTTT 
GGTTGTTGGGAGA-3′ (forward) and 5′-TCGGTCCCAC 
CAATCTCGACTCTTG-3′ (reverse). The cucumber β-actin 
gene (Csa6G484600.1) was used as an internal control (li 
et al. 2012) which is a homolog to ACTIN 7 in Arabidopsis 
(85 % CDS identity) (forward, 5′-ATTCTTGCATCTCTA 
AGTACCTTCC-3′ and reverse, 5′-CCAACTAAAGGGA 
AATAACTCACC-3′). ACTIN7 was used as a positive con-
trol to ensure the quality of rnA and cDnA previously 
(Tanaka et al. 2005; Chambers and Shuai 2009). each sam-
ple was repeated three times (technical replications). Aver-
age relative expression levels for P1, P2, F1, B-l, B-e, F-e 
and F-l were calculated. T tests were performed to test the 
significance of differences in expression levels among differ-
ent samples.

Results

Inheritance of early flowering time in Muromskij cucumber

Frequency distribution of flowering time among test materi-
als in 2 years is presented in Fig. 1b–e. The average DTA 
(days to anthesis after transplanting) of Muromskij (P2) was 
about 5–9 days earlier than that of 9930 (P1), whereas F1 
plants flowered 2–3 days later than Muromskij and 3–6 days 
earlier than 9930 (Fig. 1) suggesting the major early flower-
ing allele in Muromskij might be dominant. The DTAs in 
the four segregating populations (F2-2012 Spring, F2-2012 
Autumn, F2-2013 Spring, BC1P1 in spring 2013) showed 
continuous variation, suggesting that the early flowering 
trait in Muromskijis quantitatively inherited (Fig. 1b–e).

QTl-seq identified ef1.1, a major QTl locus controlling 
early flowering on chromosome 1

Illumina high-throughput sequencing resulted in 
57,674,716 and 64,995,772 short reads (100 bp in length) 
from e-pool (8× depth coverage or 96.6 % coverage) and 
l-pool (9× depth coverage or 96.7 % coverage), respec-
tively. These short reads were aligned to the 9930 reference 
genome and 234,393 SnPs were identified between e-pool 
and the reference genome. A SnP-index was calculated for 
each identified SnP. An average SnP-index was computed 
in a 1 Mb interval using a 10 kb sliding window. SnP-
index graphs were generated for the e-pool (Fig. 2a) and 
l-pool (Fig. 2b) by plotting the average SnP-index against 
the position of each sliding window in the 9930 genome 
assembly. By combining the information of SnP-index 
in e-pool and l-pool, Δ (SnP-index) was calculated and 
plotted against the genome positions (Fig. 2c).

It was expected that the SnP-index graphs of the e-pool 
and l-pool would be identical for the genomic regions that 
are not relevant to the phenotypic difference (flowering 
time), whereas the genomic region(s) harboring the flower-
ing time QTl(s) would exhibit unequal contributions from 
P1 and P2 parental genomes. In addition, the SnP-index of 
these regions for e- and l-pools would appear as mirror 
images with respect to the line of SnP-index = 0.5 (Takagi 
et al. 2013). The region on chromosome 1 from 22.86 to 
26.31 Mb had an average SnP-index higher than 0.65 in 
e-pool with the highest being 0.84, while the SnP-index 
in the corresponding region of l-pool was lower than 0.31 
(the lowest was 0.07). examining SnP haplotypes among 
the early flowering individuals in the e-pool showed that 
most of those plants carried the Muromskij alleles in the 
22.86–26.31 Mb region of chromosome 1, whereas most 
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Fig. 3  Identification and validation of early flowering QTl Ef1.1 
in cucumber chromosome 1. a Δ (SnP-index) graph from QTl-seq 
analysis identified a QTl Ef1.1 1 at the interval of 22.86–26.31 Mb 
on chromosome 1. b linkage analysis with molecular markers con-
firmed the location of Ef1.1 QTl with closest flanking markers 
Inde10 to Indel1. c examination of recombinants in F2 refined the 
location of Ef1.1 in an interval defined by Indel markers Indel8 and 
Indel1, where a candidate gene Csa1G651710 was identified near 
SSr00262 (arrowed)
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late-flowering individuals in the l-pool possessed 9930 
alleles suggesting that there may be a major QTl control-
ling early flowering time in this region.

The Δ (SnP-index) value should be significantly differ-
ent from 0 if a genomic region harbors a major QTl of the 
target gene. At 95 % significance level, only one genomic 
region on chromosome 1 from 22.86 to 26.31 Mb had the 
Δ (SnP-index) value that was significantly different from 
0. These results indicated that there was a major QTl con-
trolling flowering time at the 22.86–26.31 Mb region on 
chromosome 1 in cucumber (Fig. 3a), which was desig-
nated as Ef1.1 (early flowering 1.1).

Analyses of the SSr and Indel markers narrowed 
down ef1.1 to a 890 Kb interval

To confirm the early flowering QTl detected by QTl-
seq, we conducted classical bi-parental QTl analysis with 
232 F2 plants from the 2012 autumn experiment. Among 
142 SSr markers from chromosome 1 (Supplementary 
Table 1), seven were polymorphic between the e- and 
l-pools. From the distal part of chromosome 1 (21.0–
29.1 Mb) which was not well covered by SSr markers, 
we developed six Indel markers. These 13 markers (details 
in Table 1) were applied to the segregating population for 

QTl analysis. MQM mapping analysis identified a major 
QTl for early flowering delimited by two Indel markers 
Indel10 and Indel1, which was physically located in the 
region of 25.42–27.31 Mb on chromosome 1 (Fig. 3b).
The lOD scores in this region ranged from 0.04 to 37.3 
(peaked at marker locus SSr00262), and this region could 
explain 52.3 % of the variance. This QTl mapping result 
was consistent with the QTl-seq analysis supporting a 
major QTl locus Ef1.1 for early flowering in the genomic 
DnA interval of 25.42–26.31 Mb on chromosome 1. We 
analyzed SnP haplotypes of four F2 recombinants in this 
region which allowed for further narrowing the Ef1.1 locus 
down to an 1.84 Mb interval between the markers Indel8 
(25.57 Mb) and Indel1 (27.31 Mb) (Fig. 3c). Therefore, the 
25.42–26.31 Mb (890 kb) genomic regions in chromosome 
1 may harbor the candidate gene for Ef1.1. 

Identification of a candidate gene for the early flowering 
locus

In this 890 kb region, 84 genes were predicted (li et al. 
2011, Supplementary Table 2). Csa1G651710 caught 
our attention based on the gene annotation of cucumber 
which had the phosphatidylethanolamine-binding con-
served site. Csa1G651710 was predicted to belong to the 

Table 1  The information of 
13 markers linked with early 
flowering on chromosome 1

a location in 9930 draft 
genome assembly (Huang et al. 
2009)

loci Primer sequences (5′→3′) Position (bp)a lOD value

SSr19914 F: ATGGTCCACCAAACAAATGG
r: GCTGTACTTGGAATCACTTCCC

21,334,709 0.18

SSr14445 F: TCCATGGAAATTGAAAACCC
r: CGATCCTTATCGAACAGCCT

21,848,054 0.19

SSr17922 F: CATTCTAGGTCAATGAATCGCA
r: GCAAAGTTGCCACATTGAAG

24,482,515 0.17

SSr16695 F: CACAATCCCACGAAGAACAA
r: TGCAATTATGGCAAATCAAAA

24,649,281 0.36

SSr22638 F: TGTGTAAGATTTTTATTGGATGCC
r: CTGAGCTTGATCAATTCCTTCA

24,682,912 0.21

Indel13 F: TGACACAAAAGTAACAAACATA
r: GTCCATTCGTTAAGGAGTGA

25,262,753 0.04

Indel10 F: GCGATTGTAAAAGCATTG
r: GCGATTGTAAAAGCATTG

25,426,904 0.60

Indel8 F: TAA AACACCACACCCGCAAT
r: TT TAA AAGGGTATTGTTGG

25,570,083 32.73

SSr00262 F: CCGTTGGTCTTGGACTCTCA
r: TGTAAAAGTGATCAGGAGGGTCT

25,851,547 37.25

Indel1 F: CTTCAAAGCGAAAAGGACGA
r: ACATTACTCATTCTTGGCGA

27,308,465 0.42

SSr22144 F: AGGCTTACAGAACAGCATTA
r: GCTGAGGAACAATGGTAAAT

27,364,694 0.55

Indel25 F: GCAAAATACAACAAAGTAACCC
r: TTCTTTCTGTGTTTGGTCTGTT

28,328,087 0.80

Indel27 F: TATTTA CTCATCGTATCATTTT 28,790,348 0.47

r: AAGTATTTGTATATGGCTTTT
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phosphatidylethanolamine-binding protein (PeBP) fam-
ily. FlOWerInG lOCUS T (FT) in Arabidopsis was 
also a PeBP family member and was a major component 
of florigen that regulated flowering time in Arabidopsis 
thaliana (Taoka et al. 2013). The results of blast align-
ment showed that the CDS identity of Csa1G651710 with 
Arabidopsis FT gene was as high as 74 % (Supplementary 
Fig. 1) and Csa1G651710 encoded a protein sharing 78 % 
sequence identity with Arabidopsis FT protein (Fig. 4a). 
Since Csa1G651710 was the only FT homolog in the 
cucumber genome and in the Arabidopsis genome FT was 
the best match of Csa1G651710, we therefore regarded 
Csa1G651710 as the FT homolog in cucumber and desig-
nated this gene CsFT.

The physical position of the CsFT gene in cucumber 
genome is 25,850,971–25,855,507 bp in the 9930 draft 
genome assembly, which is very close to SSr00262 marker 
at which the lOD curve peaked for flowering time QTl 
Ef1.1 (Fig. 3b). Therefore, CsFT is a most possible candi-
date gene for Ef1.1.

We investigated expression patterns of CsFT with qPCr 
in two parental lines, their F1, and the early and late-flower-
ing individuals in F2 and BC1 populations to analysis if the 
expression level of CsFT may contribute to the variance of 
flowering time (Fig. 4b). The expression level of CsFT in 
the early flowering P2, F1, F2 (F-e) and BC1 (B-e) plants 
was significantly higher than that in the late-flowering P1, 
F-l and B-l plants (P < 0.05) further suggesting that CsFT 
may be a candidate gene for the major QTl controlling 
flowering time in Muromskij cucumber.

Discussion

In this study, we employed QTl-seq (Takagi et al. 2013) 
to identify a major QTl for early flowering in cucumber 
with an F2 mapping population. This method took advan-
tage of the high-throughput whole genome re-sequencing 
and bulked-segregant analysis (BSA). In addition, use of 
SnP-index allowed accurate quantitative evaluation of 
the frequencies of parental alleles as well as the genomic 
contribution from the two parents to F2 individuals. These 
features of QTl-seq make it a quicker and more efficient 
method to identify genomic regions harboring the major 
QTl of the target gene.

QTl-seq analysis identified a major QTl Ef1.1, on 
cucumber chromosome 1, which was verified with classical 
QTl analysis (Fig. 3). The position of Ef1.1 was defined 
by two flanking SSr markers SSr22638 and SSr22144 
(24.68–27.36 Mb). Ef1.1 is near to QTl Da1.1/1.2, con-
trolling for the first female flowering time detected by 
Miao et al. (2012). Da1.1/1.2 located in between 23.72–
24.68 Mb on cucumber chromosome 1, defined by two 

flanking markers SSr22826 and SSr22638. Therefore, 
Da1.1/1.2 and Ef1.1 are close but different QTls.

By a closer look of the SnP-index and Δ (SnP-index) 
plots (Fig. 2), in addition to Ef1.1, two regions also showed 
slight deviations from 0 in Δ (SnP-index) values: one was 
an interval of 27.61–33.62 Mb on chromosome 3, and the 
other on almost the entire chromosome 7. Both regions had 
negative Δ (SnP-index) values (Fig. 2) as opposed to what 
was observed at the Ef1.1 region on chromosome 1. We did 
not find the polymorphic SSr markers on chromosome 7 
through screening the 108 SSr markers on chromosome 7 
and the linkage analysis on chromosome 3 have not been 
performed by now. This may suggest that the early flower-
ing parental line Muromskij might also bear late-flowering 
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Fig. 4  Structure identity and expression of cucumber FT gene 
homolog Csa1G651710. a Alignment of cucumber Csa1G651710 
and Arabidopsis FlOWerInG lOCUS T (FT) protein sequence. 
Amino acid residues with >50 % identity or similarity between the 
two homologs are shaded black or gray, respectively. b relative 
expression of Csa1G651710 in the early flowering Muromskij (P2), 
F1, BC1P2 (B-e) and F2 (F-l) bulks was significant higher than later 
flowering 9930 (P1), BC1P2 (B-l) and F2 (F-l) bulks. **P < 0.01 
and *P < 0.05, respectively, in Student’s t test. Bar SeM, n = 5
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alleles, which is consistent with the transgressive segre-
gation pattern observed in the segregating populations 
(Table 1). Further analysis is needed to identify those minor 
QTls.

QTl-seq and classical QTl analysis delimited the 
early flowering QTl, Ef1.1 to an 890 kb physical interval 
on chromosome 1 that contributed to 52.3 % of the phe-
notypic variation (Fig. 3). There are 84 predicted genes 
in this region. Among the 84 genes, the genetic position 
(Fig. 3) and expression pattern (Fig. 4b) of the CsFT gene 
suggested that it could be a candidate gene for Ef1.1. 
The physical location of CsFT was near to SSr00262 
which had the highest lOD value (Fig. 4a). CsFT shared 
78 % amino acid sequence identity with Arabidopsis FT 
(Fig. 4a) and the expression level of CsFT in early flow-
ering plants was higher than the later flowering plants 
(Fig. 4b). Therefore, it is reasonable to postulate that 
CsFT is the candidate gene for the early flowering in 
cucumber. However, further evidence is needed to func-
tionally validate this. For the remaining 83 genes in this 
region, there are 36 genes predicted to be unknown genes. 
For the 47 genes left, we did not identify any gene that is 
homologous Arabidopsis genes involved in the flowering 
time pathway, for example, CO, SOC1, FD, TFL1 et al. 
However, we need to further experiments to prove the 
hypothesis.
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